Compréhension mathématique

Allez, après les billets un peu velus qu’étaient Introduction à la complexité algorithmique, 1/2 et Introduction à la complexité algorithmique, 2/2, un billet un peu plus light et un peu plus « méta », probablement. Et qui part dans le n’importe quoi, probablement aussi. Il est probable également qu’à la fin de la lecture de cet article vous soyez convaincu que je suis, dans le meilleur des cas, très exigeante avec moi-même, et dans le pire des cas que vous soyez  tentés de me passer un chouette pyjama blanc qui s’attache dans le dos 🙂

Je suis assez fascinée par le fonctionnement du cerveau humain. Pas par la manière dont il fonctionne, ça j’en sais rien, mais par le fait même qu’il fonctionne. Le concept de lire, par exemple, ça continue à m’émerveiller. J’y reviendrai sans doute à l’occasion 🙂 (parce que ça touche probablement plus à l’apprentissage qu’à la compréhension, et que c’est deux sujets connexes, mais différents). (Enfin je crois.)

Bref, je passe pas mal de temps à réfléchir à la manière dont je réfléchis, et à la manière d’améliorer la manière dont je réfléchis, ou à tenter optimiser ce que je fais pour que ça corresponde à ma manière de réfléchir. Et dans cette réflexion, j’ai en particulier redéfini ce que j’entendais par « compréhension ».

Je me limite ici explicitement à un type de compréhension bien particulier, que j’appellerai « compréhension mathématique » à défaut d’un terme plus adéquat. Je sais même pas si je peux exactement définir le terme ; alors je vais essayer d’expliquer l’impression que ça fait. Ça peut paraître bizarre de relier la compréhension aux impressions, mais en ce qui me concerne j’ai, peut-être paradoxalement, appris à faire confiance à mon ressenti pour évaluer ma compréhension des choses.

Il m’arrive fréquemment de me lamenter que je ne comprends plus aussi vite qu’avant ; je me demande dans quelle mesure ça ne vient pas du fait que je suis plus exigeante envers moi-même. Il fut une époque où ma définition de « compréhension » était au niveau de « ce que tu racontes a l’air logique, et je vois l’enchaînement logique de ce que tu fais au tableau, et je vois en gros ce que tu fais ». J’ai aussi un souvenir assez cuisant d’incidents du genre :

« Tiens, tu devrais lire cet article.
— OK.
<quelques heures plus tard>
— J’ai finiiiii !
— Déjà ?
— Bin, ouais… je lis vite…
— Et t’as tout compris ?
— Bin… ouais…
— Y compris pourquoi <point obscur mais potentiellement crucial du papier> ?
<gros blanc, soupir et explications> » (pas de mon fait, les explications.)

Évidemment, c’était complètement de la bonne foi de mon côté. J’étais persuadée d’avoir effectivement compris, avant qu’on ne me démontre que j’avais raté pas mal de choses.

Depuis, j’ai appris plusieurs choses. La première est que « comprendre vaguement » n’est pas « comprendre », du moins pas à mon propre niveau (actuel) d’exigence. C’en est la première étape. Ça peut aussi en être la dernière étape, si c’est un sujet sur lequel je peux/veux me contenter de connaissances « de surface ». J’ai probablement gagné pas mal en modestie et je dis probablement beaucoup plus souvent que je n’ai qu’une vague idée de certains sujets.

La deuxième chose, c’est que oui, comprendre, ça prend du temps. Aujourd’hui, j’estime que je commence à avoir une compréhension « correcte » (encore une fois, à mon niveau d’exigence, qui est probablement élevé) à la troisième ou quatrième lecture d’un article de recherche. En-dessous de ça, j’ai « une vague idée de ce que raconte le papier ».

La troisième chose, et ça pourtant c’est une citation qui revenait souvent à la maison, c’est que « la répétition est l’âme de l’enseignement bien compris ». Ça aide beaucoup d’avoir au moins une exposition aux notions avant de commencer quelque chose de nouveau et velu. La première exposition est une grande baffe dans la gueule, la deuxième commence à aller mieux, au bout de la troisième on commence à se trouver en terrain connu.

La quatrième chose est probablement reliée à la deuxième – « ça prend du temps ». J’ai une ode à faire à la craie et au tableau noir. Les nouvelles technologies nous ont apporté tout un tas de machins vachement chiadés, des vidéoprojecteurs, des tableaux numériques, et je crois que je vais même mettre le tableau blanc et les Velleda dans le lot. Au risque de passer pour une vilaine réactionnaire, tout ça ne vaut pas la craie et le tableau noir. Bon, OK, vert, le tableau, je concède ça. C’est plus long d’écrire une preuve au tableau que de sortir un Powerpoint (ou des slides Beamer, je suis pas sectaire dans mon rejet 😉 ) avec la preuve dessus. Donc ouais, on avance moins vite dans le cours, probablement. Mais ça laisse aussi le temps de suivre. Et, c’est très con, mais ça laisse aussi le temps de prendre des notes. Beaucoup de mes collègues de classe me disent qu’ils « préfèrent écouter que noter » (surtout que souvent, pour les cours au tableau, on a des polys qui sont en général d’excellente qualité). Pour moi, noter aide à rester concentrée, et au final à mieux écouter. Je griffonne aussi au crayon certains points de raisonnement qui seraient pas forcément évidents à la relecture. Bon, des fois, je me laisse des blagues pour les révisions, aussi – j’ai trouvé l’autre jour un joli « It’s a circle, OK? » à côté d’une figure de patatoïde. Ça m’a beaucoup fait rire. Ah, et quant au fait que ma hargne s’étende aux tableaux blancs : déjà, les feutres Velleda, ça marche jamais. En plus, des fois, ya un marqueur permanent qui vient se paumer dans le porte-feutres (et après on passe un temps dingue à repasser au feutre effaçable pour effacer). Et en plus, ça s’efface plus vite. J’ai appris à apprécier la pause induite par le nettoyage du tableau noir – la méthode « courante » chez nous est de faire deux passes, une avec un machin humide et une avec une raclette. Ça m’a vachement impressionnée la première fois que j’ai vu ça 😉 (oui, je suis très impressionnable) et depuis, je profite de la minute ou deux que ça prend pour relire ce qu’on vient de faire. Je trouve ça salutaire. Bref, le tableau et la craie, c’est la vie.

Et j’ai aussi appris à lire un article scientifique, du moins avec une méthode qui me convient à moi. En général, je fais une première passe très rapide pour avoir une idée de la structure de l’article, de quoi il parle, de la manière dont s’enchaîne la preuve principale, et j’essaie de voir s’il y a des trucs qui vont m’agacer - je commence à avoir des idées assez arrêtées sur les structures qui me facilitent ou pas la vie dans un article, et quand ça en dévie je râle un peu, même si je suppose que ces structures sont pas les mêmes pour tous. (Bon, il y a aussi des articles intrinsèquement pénibles à lire, il faut l’admettre.) Par « très rapide », j’entends entre une demi-heure et une heure pour un article d’une dizaine de pages.

Ma deuxième lecture est une lecture « d’annotations ». Je lis un peu plus en détail, et je mets des questions partout. Les questions sont en général de l’ordre du « pourquoi ? »  ou du « comment ? », sur des éléments de langage tels que « it follows that » (il suit de ce qui précède que), « obviously » (il est évident que), ou tous les trucs genre « par une simple application du théorème de Machin ». C’est aussi « relativement » rapide, parce qu’il y a beaucoup de signaux auxquels se raccrocher, et que je ne cherche pas encore à avoir une compréhension de tous les détails, mais à identifier les détails qui nécessitent que j’y passe un peu de temps pour les comprendre. Je note aussi les points qui me « gênent », c’est à dire les points où je ressens une espèce d’inconfort. C’est un peu difficile à expliquer, parce que c’est vraiment un « gut feeling », une intuition qui me dit « mmmh, là, ya un truc qui coince. Je sais pas quoi, mais ya un truc qui coince. » J’aime pas trop le terme d’intuition pour traduire « gut feeling », parce que c’est littéralement ça. Une espèce de malaise dans l’abdomen qui traduit l’inconfort.

Pendant la troisième lecture, qui est la plus longue, je m’attache à répondre aux questions de la deuxième lecture et à reprendre les calculs. Et à me convaincre, bien souvent, que oui, ce machin est bien une typo, et pas une erreur dans mon raisonnement ou mes calculs à moi. La quatrième lecture et les lectures suivantes continuent sur le même mode pour les questions auxquelles je n’ai pas répondu pendant la troisième lecture (et qui peuvent peut-être s’éclaircir entre temps).

J’estime que j’ai compris un papier quand j’ai répondu à l’immense majorité des questions posées en deuxième phase. (Et je me débrouille en général pour trouver quelqu’un de plus malin que moi pour celles qui restent en suspens). Mais même là… je sais que bien souvent, c’est pas encore parfait.

Le test ultime, c’est de préparer une présentation à propos du papier. Dans la série faites ce que je dis, pas ce que je fais, quand je fais ça, je prépare… des slides pour vidéoprojecteur. Parce que j’ai beau préférer, en tant qu’étudiante, un cours au tableau, je me rends bien compte que c’est beaucoup de boulot, et que faire une (bonne) présentation au tableau, c’est difficile. Un jour, j’essaierai – peut-être. Une fois que j’ai des slides (qui, en général, me permettent de re-débusquer quelques points obscurs), je tente de faire une présentation. Et là, on revient au « gut feeling ». Si ça bafouille, s’il y a des slides qui n’ont pas de sens, si la présentation ne se passe pas comme sur des roulettes, c’est qu’il y a probablement encore quelque chose derrière qui nécessite que j’y passe du temps.

Quand tout, finalement, finit par sembler « bien », le sentiment qui prévaut, c’est une espèce de soulagement mêlé de victoire. Je sais pas trop à quoi comparer ça. Peut-être aux gens qui font des dominos. Tu passes un temps dingue à mettre tes petits dominos l’un après l’autre, et je pense qu’au moment où le dernier tombe sans que le truc soit interrompu, ça doit être à peu près ce sentiment-là.

Évidemment, je peux pas me permettre de faire ça avec tout ce que je lis, ça prendrait trop de temps. Je sais pas s’il y a moyen d’accélérer le processus mais je pense pas que ce soit possible, au moins pour moi, de façon significative. Parce que j’ai aussi besoin de « laisser décanter » les choses. Il y a d’ailleurs pas mal d’hypothèses « fortes » sur le fait que le sommeil ait un impact important sur l’apprentissage et la mémoire ; je ne sais pas dans quelle mesure on peut étendre ça à mes histoires de compréhension, mais ça m’étonnerait pas que le cerveau en profite pour ranger et faire les connexions qui vont bien.

Du coup, c’est parfois assez frustrant de laisser les choses à un état de « compréhension partielle », surtout quand on ne sait pas exactement ce qui coince. Le « gut feeling » est là (et pas seulement à la veille de l’examen 🙂 ). C’est parfois ce qui me ferait tout laisser tomber : à quoi bon comprendre les choses à moitié ? Mais peut-être que la moitié, c’est mieux que rien du tout, quand on sait qu’il reste la moitié du chemin à parcourir. Et, parfois, quand on s’entête un peu, tout finit par cliquer ensemble. Et c’est un sentiment d’accomplissement que pas grand chose d’autre n’arrive à égaler.

9 commentaires sur « Compréhension mathématique »

  1. Je plussoie l’appréciation du tableau noir !!!
    Sinon, quand tu parles du théorème de Machin, tu donnes dans le générique, et pas une référence à ça ?! 😉

  2. « En plus, des fois, ya un marqueur permanent qui vient se paumer dans le porte-feutres (et après on passe un temps dingue à repasser au feutre effaçable pour effacer). »

    Je vois qu’on a les mêmes problèmes… Ma hantise dans les quelques formations que je fais est d’écrire sur le tableau blanc avec un indélébile. Même si j’ai séparé les feutres au départ je me retrouve emporté par mon sujet à ne plus faire gaffe à ce sur et avec quoi j’écris.

    1. Heh. J’ai un TA qui a fini par balancer un marqueur indélébile d’un geste rageur à la poubelle après l’avoir repris deux fois sans faire gaffe 🙂

  3. Tout pareil :

    – le meilleur moyen d’être sûr d’avoir compris est de le réexpliquer à quel’un ou de faire comme si (et dans le même registre tu connais peut-être la technique qui veuille qu’on ne demande pas de l’aide à un collègue pour débuguer, sans avoir auparavant tout expliqué par écrit ou devant une marionette : ça force à tout redérouler, à se reposer des questions, et alors on trouve le bug tout seul) (et je me dis que c’est aussi un moyen de vaincre la paresse naturelle) ;

    – le sommeil : capital ; et aussi capital : le changement de thème — c’est pour ça qu’à l‘école on ne fait pas une journée de maths, une journée de français…

    1. Ah, je la connaissais avec un canard en plastique, pas avec une marionnette. Rubber ducking, quoi 🙂 Mais oui, j’ai aussi résolu un certain nombre de problèmes en rédigeant le mail qui pleurait pour avoir de l’aide.

      Et pour le changement de thème, oui, mais dans une certaine limite : le changement de contexte (et les interruptions en général) prennent du temps. Mais bon, c’est probablement pas à toi que je vais apprendre ça, on doit avoir peu ou prou les mêmes lectures sur le sujet 😉

      1. Les interruptions, oui, une plaie. Question de dosage.

        D’un côté nous ne sommes pas faits pour être attentifs en permanence : on apprend aux profs à scinder leurs cours en blocs de 20 minutes, c’est la durée classique d’attention (et un dessin animé fait bizarrement à peu près cette durée…). Récréation, changement de matière, tout ça vise à éviter la fatigue. Idem pour moi quand je lis un livre technique, c’est par petites doses.

        Par contre, en période de travail autonome, ou de création, une fois que la sauce prend et qu’on est chaud, quasi en transe, toute interruption est une catastrophe. On n’y revient pas comme ça.

        Et, drame personnel, mes périodes de pic intellectuel coïncident avec les heures des repas, de la rentrée à la maison à cause des gamins, et du « faut se coucher ». Tandis que ma gamine ne sieste et me fout la paix qu’au moment de la digestion, où je ne suis bon qu’à surfer et commenter. (D’ailleurs il est 16h, je me sens maintenant intellectuellement chaud, je vais coder ou blogger : je parie qu’elle va se réveiller immédiatement…)

      2. Ouais. Quand j’ai besoin d’abattre réellement du boulot sur lequel je manque de motivation ou n’importe quoi, je dégaine le Pomodoro (http://www.pomodorotechnique.com/) – j’ai une app android pour gérer ça (Pomodroido). Le setup par défaut est à 25 minutes, le mien est réglé à 20 minutes, s’il est à 25 minutes en général je finis par regarder la gueule du compteur au bout de 21 minutes et 30 secondes 🙂 Et ya pas à dire, mais les blocs de 20 minutes ininterrompus, ça marche, en tout cas pour moi, mieux que de pas avoir un truc qui blipe toutes les 20 minutes. Parce que, au moins, je SAIS que j’ai regardé mon mail il y a moins de 20 minutes, et que la probabilité qu’il y en ait un nouveau est… limitée. (Oui, j’ai un problème avec le mail, mais ça a toujours été. J’avais déjà le problème avec la boîte aux lettres physique avant d’avoir une adresse e-mail).

      3. Podomoro, tiens, pas con. J’allais dire « vais essayer » mais en général soit les interruptions sont extérieures, soit j’ai un machin qui se met à ramer et faudrait que je me retienne de ne pas aller voir mon mail pendant ce temps…

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s